Coefficients of Harmonic Maass Forms
نویسندگان
چکیده
Harmonic Maass forms have recently been related to many different topics in number theory: Ramanujan’s mock theta functions, Dyson’s rank generating functions, Borcherds products, and central values and derivatives of quadratic twists of modular L-functions. Motivated by these connections, we obtain exact formulas for the coefficients of harmonic Maass forms of non-positive weight, and we obtain a conditional result for such forms of weight 1/2. This extends earlier work of Rademacher and Zuckerman in the case of weakly holomorphic modular forms of negative weight.
منابع مشابه
Differential Operators and Harmonic Weak Maass Forms
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms have transcendental coefficients, we show that those...
متن کاملDifferential Operators for Harmonic Weak Maass Forms and the Vanishing of Hecke Eigenvalues
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms are expected to have transcendental coefficients, we...
متن کاملExact Formulas for Coefficients of Jacobi Forms
In previous work, we introduced harmonic Maass-Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincaré series, as well as Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this...
متن کاملComputation of Harmonic Weak Maass Forms
Harmonic weak Maass forms of half-integral weight are the subject of many recent works. They are closely related to Ramanujan’s mock theta functions, their theta lifts give rise to Arakelov Green functions, and their coefficients are often related to central values and derivatives of Hecke L-functions. We present an algorithm to compute harmonic weak Maass forms numerically, based on the automo...
متن کاملAlgebraic Formulas for the Coefficients of Half-integral Weight Harmonic Weak Maass Forms
We prove that the coefficients of certain weight −1/2 harmonic Maass forms are “traces” of singular moduli for weak Maass forms. To prove this theorem, we construct a theta lift from spaces of weight −2 harmonic weak Maass forms to spaces of weight −1/2 vectorvalued harmonic weak Maass forms on Mp2(Z), a result which is of independent interest. We then prove a general theorem which guarantees (...
متن کامل